1. 1. L HW. Human physiological limitations to long-term spaceflight and living in space. Aerospace Medicine and Human Performance. 2023;94(6):444-456. doi:10.3357/AMHP.6190.2023 2. 2. Russell BK, Burian BK, Hilmers DC, Beard BL, Martin K, Pletcher DL, et al. The value of a spaceflight clinical decision support system for earth-independent medical operations. Nature Partner Journals Microgravity. 2023;9(1):46. doi:10.1038/s41526-023-00284-1 3. 3. Smith K, Mercuri J. Microgravity and radiation effects on astronaut intervertebral disc health. Aerospace Medicine and Human Performance. 2021;92(5):342-352. doi:10.3357/AMHP.5713.2021 4. 4. Coulombe JC, Senwar B, Ferguson VL. Spaceflight-induced bone tissue changes that affect bone quality and increase fracture risk. Current Osteoporosis Reports. 2020;18(1):1-12. doi:10.1007/s11914-019-00540-y 5. 5. Marfia G, Guarnaccia L, Navone SE, Ampollini A, Balsamo M, Benelli F, et al. Microgravity and the intervertebral disc: The impact of space conditions on the biomechanics of the spine. Frontiers in Physiology. 2023;14:1124991. doi:10.3389/fphys.2023.1124991 6. 6. Cannavo A, Carandina A, Corbi G, Tobaldini E, Montano N, Arosio B. Are skeletal muscle changes during prolonged space flights similar to those experienced by frail and sarcopenic older adults? Life (Basel). 2022;12(12). doi:10.3390/life12122139 7. 7. Sibonga JD, Cavanagh PR, Lang TF, Leblanc AD, Schneider VS, Shackelford LC, et al. Adaptation of the skeletal system during long-duration spaceflight. Clinical Reviews in Bone and Mineral Metabolism. 2007;5:249-261. 8. 8. Smith SM, Heer M. Calcium and bone metabolism during space flight. Nutrition. 2002;18(10):849-852. doi:10.1016/s0899-9007(02)00895-x 9. 9. O'Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a therapeutic agent in bone regeneration. Materials (Basel). 2020;13(10):2111. doi:10.3390/ma13102211 10. 10. Clezardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiological Reviews. 2021;101(3):797-855. doi:10.1152/physrev.00012.2019 11. 11. Globus RK, Morey-Holton E. Hindlimb unloading: rodent analog for microgravity. Journal of Applied Physiology. 2016;120(10):1196-1206. doi:10.1152/japplphysiol.00997.2015 12. 12. Yousofvand N, Hasanvand V. Therapeutic effect of garlic flower extract and zinc sulphate combined on hematocrit in streptozotocin-induced diabetic rats. Experimental Animal Biology. 2019;7(4):39-46. doi:10.30473/eab.2019.5689 13. 13. Clément G, Hamilton D, Davenport L, Comet B. Medical survey of European astronauts during Mir missions. Advances in Space Research. 2010;46(7):831-839. doi:https://doi.org/10.1016/j.asr.2010.05.023 14. 14. Seo H-J, Cho Y-E, Kim T, Shin H-I, Kwun I-S. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract. 2010;4:356 - 361. doi:10.4162/nrp.2010.4.5.356 15. 15. Lowe NM, Lowe NM, Fraser WD, Jackson MJ. Is there a potential therapeutic value of copper and zinc for osteoporosis? The Proceedings of the Nutrition Society. 2002;61(2):181-185. doi:10.1079/PNS2002154 16. 16. Park KH, Park B, Yoon DS, Kwon SH, Shin DM, Lee JW, et al. Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun Signal. 2013;11:74. doi:10.1186/1478-811X-11-74 17. 17. Chou J, Hao J, Hatoyama H, Ben-Nissan B, Milthorpe B, Otsuka M. The therapeutic effect on bone mineral formation from biomimetic zinc containing tricalcium phosphate (ZnTCP) in zinc-deficient osteoporotic mice. PLoS One. 2013;8(8):e71821. doi:10.1371/journal.pone.0071821 18. 18. Sun JY, Wang JF, Zi NT, Jing MY, Weng XY. Effects of zinc supplementation and deficiency on bone metabolism and related gene expression in rat. Biol Trace Elem Res. 2011;143(1):394-402. doi:10.1007/s12011-010-8869-9
|